Computing the Greatest Common Divisor of Multivariate Polynomials over Finite Fields
نویسنده
چکیده
Richard Zippel’s sparse modular GCD algorithm is widely used to compute the monic greatest common divisor (GCD) of two multivariate polynomials over Z. In this report, we present how this algorithm can be modified to solve the GCD problem for polynomials over finite fields of small cardinality. When the GCD is not monic, Zippel’s algorithm cannot be applied unless the normalization problem is resolved. In [6], Alan Wittkopf et al. developed the LINZIP algorithm for solving the normalization problem. Mahdi Javadi proposed a refinement to the LINZIP algorithm in [4]. We implemented his approach and will show that it is efficient and effective on polynomials over small finite fields. Zippel’s algorithm also uses properties of transposed Vandermonde systems to reduce the time and space complexity of his algorithm. We also investigated how this can be applied to our case.
منابع مشابه
Polynomial GCD and Factorization via Approximate Gröbner Bases
We discuss computation of approximate Gröbner bases at high but finite precision. We show how this can be used to deduce exact results for various applications. Examples include implicitizing surfaces, finding multivariate polynomial greatest common divisors and factorizations over the rational and complex number fields. This is an extended version of a paper for SYNASC 2010: Proceedings of the...
متن کاملThe approximate GCD of inexact polynomials Part II: a multivariate algorithm
This paper presents an algorithm and its implementation for computing the approximate GCD (greatest common divisor) of multivariate polynomials whose coefficients may be inexact. The method and the companion software appears to be the first practical package with such capabilities. The most significant features of the algorithm are its robustness and accuracy as demonstrated in the results of c...
متن کاملMatrix representation of the shifting operation and numerical properties of the ERES method for computing the greatest common divisor of sets of many polynomials
The Extended-Row-Equivalence and Shifting (ERES) method is a matrixbased method developed for the computation of the greatest common divisor (GCD) of sets of many polynomials. In this paper we present the formulation of the shifting operation as a matrix product which allows us to study the fundamental theoretical and numerical properties of the ERES method by introducing its complete algebraic...
متن کاملComputing with Polynomials Given By Black Boxes for Their Evaluation: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators
Algorithms are developed that adopt a novel implicit representation for multivariate polynomials and rational functions with rational coefficients, that of black boxes for their evaluation. We show that within this representation the polynomial greatest common divisor and factorization problems, as well as the problem of extracting the numerator and denominator of a rational function, can all b...
متن کاملComplexity of Algorithms for Computing Greatest Common Divisors of Parametric Univariate Polynomials
This paper presents a comparison between the complexity bounds of different algorithms for computing greatest common divisor of a finite set of parametric univariate polynomials. Each algorithm decomposes the parameters space into a finite number of constructible sets such that a greatest common divisor of the parametric univariate polynomials is given uniformly in each constructible set. The f...
متن کامل